Coefficients of the n-fold Theta Function and Weyl Group Multiple Dirichlet Series
نویسندگان
چکیده
We establish a link between certain Whittaker coefficients of the generalized metaplectic theta functions, first studied by Kazhdan and Patterson [15], and the coefficients of the stable Weyl group multiple Dirichlet series defined in [3]. The generalized theta functions are the residues of Eisenstein series on a metaplectic n-fold cover of the general linear group. For n sufficiently large, we consider different Whittaker coefficients for such a theta function which lie in the orbit of Hecke operators at a given prime p. These are shown to be equal (up to an explicit constant) to the p-power supported coefficients of a Weyl group multiple Dirichlet series (MDS). These MDS coefficients are described in terms of the underlying root system; they have also recently been identified as the values of a p-adic Whittaker function attached to an unramified principal series representation on the metaplectic cover of the general linear group.
منابع مشابه
Weyl Group Multiple Dirichlet Series I
Given a root system Φ of rank r and a global field F containing the n-th roots of unity, it is possible to define a Weyl group multiple Dirichlet series whose coefficients are n-th order Gauss sums. It is a function of r complex variables, and it has meromorphic continuation to all of C, with functional equations forming a group isomorphic to the Weyl group of Φ. Weyl group multiple Dirichlet s...
متن کامل2 2 Ju n 20 10 WEYL GROUP MULTIPLE DIRICHLET SERIES OF TYPE C
We develop the theory of “Weyl group multiple Dirichlet series” for root systems of type C. For an arbitrary root system of rank r and a positive integer n, these are Dirichlet series in r complex variables with analytic continuation and functional equations isomorphic to the associated Weyl group. In type C, they conjecturally arise from the Fourier-Whittaker coefficients of minimal parabolic ...
متن کاملWeyl Group Multiple Dirichlet Series of Type C
We develop the theory of “Weyl group multiple Dirichlet series” for root systems of type C. For a root system of rank r and a positive integer n, these are Dirichlet series in r complex variables with analytic continuation and functional equations isomorphic to the associated Weyl group. They conjecturally arise as Whittaker coefficients of Eisenstein series on a metaplectic group with cover de...
متن کاملWeyl Group Multiple Dirichlet Series: Some Open Problems
The problems described here concern Weyl group multiple Dirichlet series (WMDs). Let F be a totally complex algebraic number field containing the group μn of n-th roots of unity. We will assume that −1 is an n-th power in F . Let Φ ⊂ R be a reduced root system. Then one can attach to Φ and n a family of multiple Dirichlet series whose coefficients involve products of n-th order Gauss sums. Thes...
متن کاملec 2 00 6 ON THE p - PARTS OF QUADRATIC WEYL GROUP MULTIPLE DIRICHLET SERIES
Let Φ be a reduced root system of rank r. A Weyl group multiple Dirichlet series for Φ is a Dirichlet series in r complex variables s1, . . . , sr, initially converging for R(si) sufficiently large, which has meromorphic continuation to C and satisfies functional equations under the transformations of C corresponding to the Weyl group of Φ. Two constructions of such series are available, one [1...
متن کامل